Solved Assignment Problems in Java (with Algorithm and Flowchart)

Q1. Create a program to compute the volume of a sphere. Use the formula: $\mathrm{V}=(4 / 3) * \mathrm{pi}^{*} \mathrm{r}^{3}$ where pi is equal to 3.1416 approximately. The r is the radius of sphere. Display the result.

Algorithm

1. Start
2. Read r
3. $\mathrm{vol}=(4 / 3) * \mathrm{pi}^{*}{ }^{*}{ }^{*} \mathrm{r}^{*} \mathrm{r}$
4. Print or display vol
5. Stop

Q2. Write a program the converts the input Celsius degree into its equivalent Fahrenheit degree. Use the formula: $\mathrm{F}=(9 / 5) * \mathrm{C}+32$.

Algorithm

1. Start
2. Initialize $\mathrm{F}=0, \mathrm{C}=0$
3. Read C
4. $\mathrm{Fh}=\left(1.8^{*} \mathrm{C}\right)+32$
5. Print or display Fh
6. Stop

Flowchart

Program

```
import java.util.Scanner;
public class CelsToFahrenheit{
public static void main(String[]args) {
    Scanner Ob1 = new Scanner(System.in);
    System.out.println("Enter temperature in Celsius:");
    float C = Ob1.nextInt();
    double Fh = (1.8*C)+ 32;
    System.out.printll("Converted Fahrenheit value is: " +Fh);
```

Q3. Write a program that converts the input dollar to its peso exchange rate equivalent. Assume that the present exchange rate is 51.50 pesos against the dollar. Then display the peso equivalent exchange rate.

Algorithm

1. Start
2. Read dollar
3. peso $=$ dollar $* 51.50$
4. Print or display peso
5. Stop

Flowchart

Program

```
import java.util.Scanner;
public class DollarToPeso{
public static void main(String [] args) {
    Scanner Ob1 = new Scanner(System.in);
    System.out.println("Enter amount of dollars to convert:");
    float dollar = Ob1.nextInt();
    double peso = dollar*51.50;
    System.out.println("Equivalent peso is: " +peso);
```

Q4. Write a program that converts an input inch(es) into its equivalent centimeters. Take note that one inch is equivalent to 2.54 cms

Q5. Write a program that exchanges the value of two variables: x and y. The output must be: the value of variable y will become the value of variable x , and vice versa.

Algorithm

1. Start
2. Read x, y
3. Declare third variable, z
$\mathrm{z}=\mathrm{x}$
$\mathrm{x}=\mathrm{y}$
$\mathrm{y}=\mathrm{z}$
4. Print or display x, y
5. Stop

Flowchart

Filled Glass $=\mathbf{x}$

Empty Glass = z

Program

```
import java.util.Scanner;
public class SwappingVariables{
public static void main(String [] args) {
    Scanner Ob1 = new Scanner(System.in);
    System.out.println("Enter value of A: ");
    int x = Ob1.nextInt();
    System.out.println("Enter value of B: ");
    int y = Ob1.nextInt();
```

 System.out.println("Before swapping, values of x and y are" \(+\mathrm{x}+\mathrm{y}\));
 int \(z=x\);
 \(x=y\);
 \(\mathrm{y}=\mathrm{z}\);
 System.out.println("After swapping, values of x and y are: " \(+\mathrm{x}+\mathrm{y}\));
 \}

Q6. Design a program to find the circumference of a circle. Use the formula: $C=2 \pi r$, where π is approximately equivalent 3.1416.

Algorithm

1. Start
2. Read r
3. Calculate circumference by the equation: Circum $=2 *{ }^{*}{ }^{*}{ }^{*} \mathrm{r}$
4. Print Circum
5. Stop

Flowchart

Program

```
package circumference;
import java.util.Scanner;
public class circumference{
    public static void main(String [] args) {
    Scanner Ob1 = new Scanner(System.in);
    System.out.println("Enter radius of circle r: ");
    int r = Ob1.nextInt();
    double pi = 3.1416;
    double Circum = 2*pi*r;
    System.out.println("circumference of circle is:" +Circum);
}
}
```

Q7. Write a program that takes as input the purchase price of an item (P), its expected number of years of service (Y) and its expected salvage value (S). Then outputs the yearly depreciation for the item (D). Use the formula: $\mathrm{D}=(\mathrm{P}-\mathrm{S}) \mathrm{Y}$

Algorithm

1. Start
2. Read P
3. Read S
4. Read Y
5. $\mathrm{D}=(\mathrm{P}-\mathrm{S}) * \mathrm{Y}$
6. Print or display D
7. Stop

Flowchart

Program

```
package depreciation;
```

import java.util.Scanner;
public class depreciation\{
public static void main(String [] args) \{
Scanner Ob1 = new Scanner(System.in);
System.out.printll("Enter purchase price of an item P: ");
float $\mathrm{P}=$ Ob1 .nextInt();
System.out.println("Enter expected salvage value S : ");
float S = Ob1.nextInt();
System.out.println("Enter expected number of years of service Y");
float $Y=$ Ob1.nextInt();
double $\mathrm{D}=(\mathrm{P}-\mathrm{S})^{*} \mathrm{Y}$;
System.out.println("Product depreciation is:" +D);

Q8. Swapping of 2 variables without using temporary (or $3^{\text {rd }}$ variable)

Algorithm

1. Start
2. $\operatorname{Read} x$ and y
3. $\mathbf{x}=\mathbf{x}+\mathbf{y}$
$y=x-y$
$\mathrm{x}=\mathrm{x}-\mathrm{y}$
4. Print or display x, y
5. Stop

Flowchart

Program

```
package swap_variables;
import java.util.Scanner;
public class swap_variables{
    public static void main(String [] args) {
    Scanner Ob1 = new Scanner(System.in);
```

 System. out.println("Enter value of x: ");
 int \(\mathrm{x}=\mathrm{Ob1}\). nextInt();
 System.out.println("Enter value of y: "); int $\mathrm{y}=\mathrm{Ob} 1$.nextInt();

System.out.println("Before swapping, values of x and y are: " $+\mathrm{x}+\mathrm{+"\mid t} \mathrm{t}$ + y); $\mathrm{x}=\mathrm{x}+\mathrm{y}$; //suppose $\mathrm{x}=10, \mathrm{y}=20$, then $\mathrm{x}=10+20=30$
$y=x-y ; / / y=x-y=30-20=10$
$\mathrm{x}=\mathrm{x}-\mathrm{y} ; / / \mathrm{x}=\mathrm{x}-\mathrm{y}=30-10=20$
System.out.println("After swappingo values of x and y are: " $+\mathrm{x}+$ "|t" t);

Q9. Determine the most economical quantity to be stocked for each product that a manufacturing company has in its inventory: This quantity, called economic order quantity (EOQ) is calculated as follows: $\mathrm{EOQ}=2 \mathrm{rs} / 1$ where: $\mathrm{R}=$ total yearly production requirement $\mathrm{S}=$ set up cost per order I=inventory carrying cost per unit

Algorithm

1. Start
2. Read R
3. Read S
4. Read I
5. $\mathrm{EOQ}=(2 * \mathrm{R} * \mathrm{~S}) / \mathrm{I}$
6. Print EOQ
7. Stop

Program

import java.util.Scanner;

public class EOQ\{
public static void main(String [] args) \{
Scanner Ob1 = new Scanner(System.in);
System.out.println("Enter total yearly production R:"); int $\mathrm{R}=\mathrm{Ob} 1$ nextInt();

System.out.printll("Enter set up cost S:");
int $\mathrm{S}=\mathrm{Ob} 1$ nextInt();
System.out.println("Enter inventory cost I:"); int $\mathrm{I}=$ Ob1.nextInt();
double $\mathrm{EOQ}=\left(2^{*} \mathrm{R}^{*} \mathrm{~S}\right) / \mathrm{I}$;
System.out.println("economic order quantity EOQ is:" +EOQ);

Q10. Write a program to compute the radius of a circle. Derive your formula from the given equation: $\mathrm{A}=\pi \mathrm{r}^{2}$, then display the output.

Algorithm

1. Start
2. Read r
3. Calculate radius by the equation: $\mathrm{r}=\operatorname{sqrt}(\mathrm{A} / \mathrm{pi})$
4. Write r
5. Stop

Flowchart

