Algorithm characteristics

1. It should have finite number of steps. No one can be expected to execute infinite number of steps.
2. The steps must be in order and simple
3. Each step should be defined clearly stated i.e. without un-ambiguity (without doubtfulness)
4. Must include all required information
5. Should exhibit at least one output

Algorithm	Flowchart	Program
An algorithm is defined as sequence of steps to solve a a problem (task).	A flowchart is pictorial	Set of instructions. Instruction is (graphical) representation of an algorithm.
	a command to the computer to do some task.	
Algorithm can also be defined as a plan to solve a problem and represents its logic.	A picture is worth of 1000 words. We can understand more from picture than words.	Implementation of Algorithm or flowchart

Different algorithms have different performance characteristics to solve the same problem. Some algorithms are fast. Some are slow. Some occupy more memory space. Some occupy less memory space. Some are complex and some algorithms are simple.

Logically algorithm, flowchart and program are the same.

Examples of Algorithms and Flowcharts (with MATLAB code)

1. To find sum of two numbers

Algorithm

1. Start
2. Read a, b
3. $c=a+b$
4. Print or display c
5. Stop

Program

1. Open MATLAB software
2. File $>$ New $>$ Blank m-file
3. Type below program
a = input(${ }^{(}$Enter value of a: ' ');
b = input(${ }^{\text {(Enter value of } b: ~ ' ~) ; ~}$
$\mathrm{c}=\mathrm{a}+\mathrm{b}$;
disp(c);

2. Finding Area of the square

Algorithm

Flowchart

Program

1. Start
2. Read length, L
3. $\operatorname{area}=\mathrm{L} * \mathrm{~L}$
4. Print or display area
5. Stop

\%Program to find area of a square
$\mathrm{L}=\operatorname{input}\left({ }^{\text {e }}\right.$ Enter length of square L: ');
area $=\mathrm{L} * \mathrm{~L}$;
disp(" Area of square is: ');
disp(area)

3. Finding Area of the rectangle

Algorithm

1. Start
2. Read side length, a
3. Read side length b
4. $\operatorname{area}=a^{*} b$
5. Print or display area
6. Stop

Flowchart

Program

\%Program to find area of a rectangle
$\mathrm{a}=\operatorname{input}\left({ }^{(}\right.$Enter side length $\mathrm{a}: ~{ }^{~}$);
b = input(${ }^{\text {E }}$ Enter side length b: ');
area $=\mathrm{a}^{*} \mathrm{~b}$;
disp('Area of rectangle is: '); disp(area);

4. Area of a triangle where three sides are given

5. Find the area \& perimeter of a square

Algorithm

Flowchart

Program

1. Start
2. Read length L
3. Area $A=L^{*} L$
4. Perimeter $\mathrm{P}=4^{*} \mathrm{~L}$
5. Print or display A, P
6. Stop

\% Program to find area \& perimeter of square
$L=\operatorname{input}\left({ }^{*}\right.$ Enter length of a square: ');
$\mathrm{A}=\mathrm{L}^{*} \mathrm{~L}$;
$\mathrm{P}=4^{*} \mathrm{~L}$;
disp(${ }^{\text {A }}$ Area of square is: ');
$\operatorname{disp}(\mathrm{A})$;
disp(${ }^{(}$Perimeter of square is: ');
$\operatorname{disp}(\mathrm{P})$;

6. Calculating the average for 3 numbers

Algorithm

1. Start
2. Read 3 numbers A, B, C
3. Calculate the average by the equation:
Average $=(A+B+C) / 3$
4. Print Average
5. Stop

Flowchart

Program

\%Average of given 3 numbers
$\mathrm{A}=\operatorname{input}\left({ }^{\text {c }}\right.$ Enter value of $\left.\mathrm{A}: ~{ }^{~}\right)$;
B $=\operatorname{input}\left({ }^{*}\right.$ Enter value of $B:{ }^{~ ')}$;
$\mathrm{C}=\operatorname{input}\left({ }^{(}\right.$Enter value of C : ');
Average $=(\mathrm{A}+\mathrm{B}+\mathrm{C}) / 3$;
disp(${ }^{*}$ Average of A, B, C is: ');
disp(Average);

7. Greatest of two numbers

Program

\%Program to find greatest of two numbers
$\mathrm{A}=\operatorname{input}\left({ }^{(}\right.$Enter value of $\left.\mathrm{A}: ~ ' ~\right) ; ~ ;$
B = input(${ }^{(}$Enter value of B: ');
if $(A>B)$
$\operatorname{disp}\left({ }^{*} \mathrm{~A}\right.$ is Larger: ');
else
disp(${ }^{(B}$ is Larger');
end

8. Interchange the value of two numbers

Algorithm

1. Start
2. Read two values into two variables a, b
3. Declare third variable, c

$$
\begin{aligned}
& c=a \\
& \mathbf{a}=\mathbf{b} \\
& b=c
\end{aligned}
$$

4. Print or display a, b
5. Stop

Flowchart

Program

> \%Interchange values of two variables
> $\mathrm{a}=\operatorname{input}\left({ }^{(}\right.$Enter value of $\mathrm{a}: ~{ }^{~}$);
> b = input(${ }^{(}$Enter value of b: ');
> $\mathrm{c}=\mathrm{a}$;
> $\mathrm{a}=\mathrm{b}$;
> $\mathrm{b}=\mathrm{c}$;
$\operatorname{disp}\left({ }^{*} \mathrm{a}={ }^{\mathrm{c}}\right.$);
$\operatorname{disp}(\mathrm{a})$;
$\operatorname{disp}\left({ }^{\circ} b={ }^{\text {' }}\right.$);
disp(b);

9. Calculate simple interest using the expression (SI=PNR/100)

Algorithm

1. Start
2. Read P, N, R
3. $\mathrm{SI}=(\mathrm{PNR}) / 100$
4. Print SI
5. Stop

Program
\% Calculate simple interest
P = input(' Enter Principal: ');
$\mathrm{N}=\operatorname{input}\left({ }^{(}\right.$Enter Time: ' $)$;
$\mathrm{R}=$ input(${ }^{\text {(Enter Rate of interest: ' }) ; ~}$
$\mathrm{SI}=\left(\mathrm{P}^{*} \mathrm{~N}^{*} \mathrm{R}\right) / 100 ;$
disp(${ }^{\text {S Simple interest is: }}$ ');
disp(SI);

10. Convert temperature from Fahrenheit to Celsius

Algorithm

1. Start
2. Initialize $\mathrm{F}=0, \mathrm{C}=0$
3. Read F
4. $\mathrm{C}=(\mathrm{F}-32) * 5 / 9$
5. Write C
6. Stop

Flowchart

Program

\%Convert Fahrenheit to Celsius
F = input(' Enter Temp. in Fahrenheit: ');
$\mathrm{C}=(\mathrm{F}-32) * 5 / 9 ;$
disp(${ }^{*}$ Temp. in Celsius is: ');
disp(C);

11. Draw a flowchart for computing factorial N , where $\mathrm{N}!=1 * 2 * 3 * \ldots . . \mathrm{N}$

Algorithm

1. Start
2. Read N
3. Initialize $\mathrm{F}=1, \mathrm{i}=1$
4. $\mathrm{F}=\mathrm{F} *$;
5. Increment i by 1
6. Repeat step 4 \& 5 until $\mathrm{i}=\mathrm{N}$
7. Print F
8. Stop

Program

\%Compute factorial of given number N
$\mathrm{N}=\operatorname{input}\left({ }^{(}\right.$Enter value of $\left.\mathrm{N}: ~ ' ~\right) ; ~$ $\mathrm{F}=1$;
for $\mathrm{i}=1: \mathrm{N}$
$\mathrm{F}=\mathrm{F}$ * i ;
end
disp(${ }^{\text {(Factorial is: ' }) \text {; }}$
$\operatorname{disp}(\mathrm{F})$;

12. Find the Sum of First Five Natural Numbers

Algorithm

1. Start
2. Initialize count $=0$, sum $=0$
3. count $=$ count +1
4. sum $=$ sum + count
5. Repeat steps 3,4 until count >5
6. Print sum
7. Stop

Flowchart

Program

$\%$ Sum of $1^{\text {st }} 5$ natural numbers
sum $=0$;
for count $=1: 5$
sum $=$ sum + count;
end
 disp(sum);

13. Calculating sum of integers from 1 to 100

Algorithm

1. Start
2. Initialize count $i=1$, sum $=0$
3. $\operatorname{sum}=\operatorname{sum}+\mathrm{i}$
4. Increment i by 1
5. Repeat steps $3 \& 4$ until i >100
6. Print sum
7. Stop

Flowchart

Stop

Program

sum $=0$;
for count $=1: 100$
sum $=$ sum + count; end
 disp(sum);

14. To find the sum of n natural Numbers

Algorithm

1. Start
2. Read n
3. count=0
4. sum=0
5. count $=$ count +1
6. sum $=$ sum + count
7. Repeat steps 5 \& 6 until count > n
8. Print sum
9. Stop

Program

\%Sum of n natural numbers
$\mathrm{N}=\operatorname{input}\left({ }^{(}\right.$Enter value of n : ');
sum $=0$;
for $\mathrm{i}=1: \mathrm{n}$
$\operatorname{sum}=\operatorname{sum}+i ;$
end
disp(" Sum of n natural numbers is: '); disp(sum);

15. Sum of squares of n natural numbers

Program
\% Sum of squares of n natural numbers
$\mathrm{n}=$ input $\left({ }^{(}\right.$Enter value of n : ${ }^{\text {' }}$;
sum $=0$;
for $\mathrm{i}=1: \mathrm{n}$
sum $=\operatorname{sum}+i * i$;
end
disp(${ }^{\text {S }}$ Sum of squares of integers up to n : '); disp(sum);

16. To find the sum of all even numbers up to ' n '

17. To find Product of numbers up to \mathbf{N}

Algorithm

1. Start
2. Read n
3. count $\mathrm{i}=1$
4. product $=1$
5. product=count*product
6. count $=$ count +1
7. Repeat steps 5,6 until count $\leq \mathrm{N}$
8. Print product
9. Stop

count $=$ count +1 product $=$ product*count

Program

\%Product of numbers up to n
$\mathrm{n}=\operatorname{input}\left({ }^{(}\right.$Enter value of $\mathrm{n}:{ }^{\text {e }}$)
prod $=1$;
for $\mathrm{i}=1: \mathrm{n}$
$\operatorname{prod}=\operatorname{prod}{ }^{*} \mathrm{i}_{\text {; }}$
end
disp(${ }^{\text {P Product of numbers up to } n: ~ ') ; ~}$ disp(prod);

18. Sum of first 50 odd numbers

Algorithm

1. Start
2. sum $=0, \mathrm{n}=1$
3. sum $=$ sum $+n$
4. $n=n+2$
5. Repeat steps 4 and 5 until $\mathrm{n} \leqq 99$
6. Print sum
7. Stop

Program

$\%$ Sum of $1^{\text {st }} 50$ odd numbers
sum $=0$;
$\mathrm{n}=1$;
while($n<=99$)
$\operatorname{sum}=\operatorname{sum}+n ;$
$\mathrm{n}=\mathrm{n}+2$;
end
$\operatorname{disp}\left({ }^{(}\right.$Sum of $1^{\text {st }} 50$ odd numbers is: '); disp(sum);

