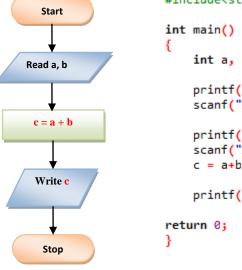
Algorithm characteristics

- 1. It should have finite number of steps. No one can be expected to execute infinite number of steps.
- 2. The steps must be in order and simple
- 3. Each step should be defined clearly stated i.e. without un-ambiguity (without doubtfulness)
- **4.** Must include all required information
- **5.** Should exhibit at least one output

Algorithm	Flowchart	Program
An algorithm is defined as	A flowchart is pictorial	Set of instructions. Instruction is
sequence of steps to solve a	(graphical) representation of	a command to the computer to
problem (task).	an algorithm.	do some task.
	A picture is worth of 1000	
a plan to solve a problem and	words. We can understand more	flowchart
represents its logic.	from picture than words.	

Different algorithms have different performance characteristics to solve the same problem. Some algorithms are fast. Some are slow. Some occupy more memory space. Some occupy less memory space. Some are complex and some algorithms are simple.

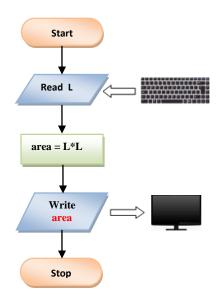

Logically algorithm, flowchart and program are the same.

Examples of Algorithms and Flowcharts (with C code)

1. To find sum of two numbers

Algorithm Flowchart **Program** #include<stdio.h> 1. Start

- 2. Read a, b
- 3. c = a + b
- 4. Print or display c
- 5. Stop




```
int a, b, c;
printf("Enter value of a: ");
scanf("%d", &a);
printf("Enter value of b: ");
scanf("%d", &b);
c = a+b;
printf("Sum of given two numbers is: %d", c);
```

2. Finding Area of the square

Algorithm Flowchart

- 1. Start
- 2. Read length, L
- 3. area = L*L
- 4. Print or display area
- 5. Stop


```
#include<stdio.h>
```

```
int main()
    int L, area;
    printf("Enter length of square L: ");
    scanf("%d", &L);
    area = L*L;
    printf("Area of square is: %d", area);
    return 0;
```

3. Finding Area of the rectangle

Algorithm

Flowchart

Program

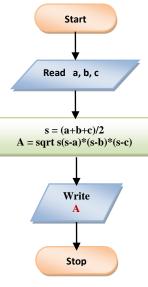
- 1. Start
- 2. Read side length, a
- 3. Read side length b
- **4.** area = a*b
- 5. Print or display area
- 6. Stop


```
#include<stdio.h>
int main()
{
    int a, b, area;
    printf("Enter side length a: \n");
    scanf("%d", &a);

    printf("Enter side length b: \n");
    scanf("%d", &b);

    area = a*b;

    printf("Area of rectangle is: %d ", area);
    return 0;
}
```


4. Area of a triangle where three sides are given

Algorithm

Flowchart

Program

- 1. Start
- 2. Read a, b, c
- 3. s = (a+b+c)/2
- 4. A=sqrt (s *(s-a)*(s-b)*(s-c))
- 5. Print or display A
- 6. Stop


```
#include<stdio.h>
#include<math.h>

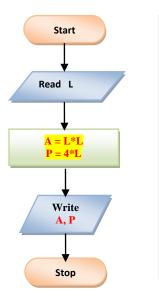
int main()
{
    int a, b, c;
    float s, A;

    printf("Enter values of a, b, c: \n");
    scanf("%d %d %d", &a, &b, &c);

    s = (a+b+c)/2;
    A = sqrt (s*(s-a)*(s-b)*(s-c));
    printf("Area of triangle is: %f", A);
    return 0;
}
```

E:\WACHEMO\Sept 2016-Jan 2017\p

```
Enter values of a, b, c:
5
8
10
Area of triangle is: 14.071247
```


5. Find the area & perimeter of a square

Algorithm

Flowchart

Program

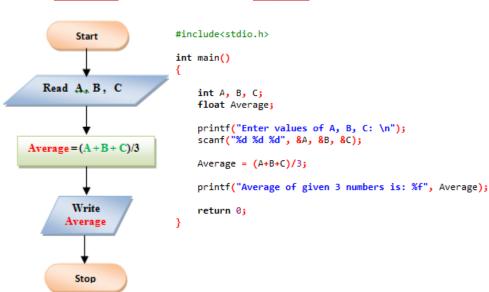
- 1. Start
- 2. Read length L
- 3. Area A = L*L
- 4. Perimeter P = 4*L
- 5. Print or display A,P
- 6. Stop


```
#include<stdio.h>
int main()
{
    int L, A, P;
    printf("Enter length of a sqaure L: ");
    scanf("%d", &L);

    A = L*L;
    P = 4*L;
    printf("Area = %d\n", A);
    printf("Perimeter = %d", P);
    return 0;
}
```

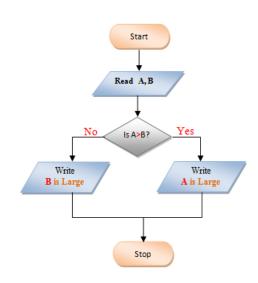
6. Calculating the average for 3 numbers

Algorithm


Flowchart

- 2. Read 3 numbers A, B, C
- **3.** Calculate the average by the equation:

$$Average = (A + B + C)/3$$


- **4.** Print average
- 5. Stop

7. Greatest of two numbers

Algorithm

- 1. Start
- 2. Read A,B
- 3. If A > B then
 Print A is large
 else
- Print B is large
- 4. Stop

Flowchart

Program

#include<stdio.h>

```
int main()
{
    int A, B;
    printf("Enter values of A, B: ");
    scanf("%d %d", &A, &B);

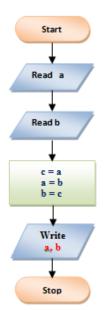
    if (A>B)
    printf("A is Larger");
    else
    printf("B is Larger");

    return 0;
```

8. Interchange the value of two numbers

Algorithm

- 1. Start
- 2. Read two values into two variables a, b
- 3. Declare third variable, c


$$c = a$$

$$a = b$$

$$b = c$$

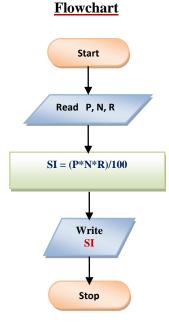
- 4. Print or display a, b
- 5. Stop

Flowchart


```
#include<stdio.h>
int main()
{
    int a, b, c;
    printf("Enter value of a:");
    scanf("%d", &a);

    printf("Enter value of b:");
    scanf("%d", &b);

    c = a;
    a = b;
    b = c;


    printf("Values of a & b after swapping: ");
    printf("a = %d\n", a);
    printf("b = %d", b);

    return 0;
}
```

9. Calculate simple interest using the expression (SI=PNR/100)

Algorithm

- Start
 Read P, N, R
- 3. SI=(PNR)/100
- 4. Print SI
- 5. Stop

Program

```
#include<stdio.h>
int main()
{
    int P, N, R;
    float SI;

    printf("Enter values of P, N, R: ");
    scanf("%d %d %d", &P, &N, &R);

    SI = (P*N*R/100);
    printf("Simple Interest is: %f", SI);

    return 0;
}
```

10. Convert temperature from Fahrenheit to Celsius

Algorithm

- 1. Start
- 2. Initialize F = 0, C = 0
- 3. Read F
- 4. C = (F-32) * 5/9
- 5. Write C
- 6. Stop

Flowchart

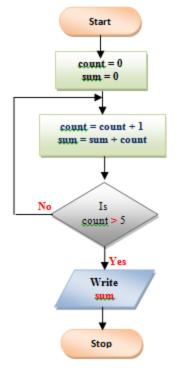
Start F = 0, C = 0 Read F C = (F - 32) * 5/9 Write C

```
#include<stdio.h>
int main()
{
    float F, C;
    printf("Enter Fahrenheit: ");
    scanf("%f", &F);

    C = (F-32)*5/9;
    printf("Temparature in Celsius is: %f", C);
    return 0;
}
```

11. Draw a flowchart for computing factorial N, where $N! = 1 * 2 * 3 * \dots N$

Algorithm Flowchart Program


12. Find the Sum of First Five Natural Numbers

Algorithm

Flowchart

Program

- 1. Start
- 2. Initialize count = 0, sum = 0
- 3. count = count + 1
- 4. sum = sum + count
- 5. Repeat steps 3,4 until count > 5
- 6. Print sum
- 7. Stop


```
#include<stdio.h>
int main()
{
    int count, sum;
    sum = 0;
    for (count = 1; count<=5; count++)
    {
        sum = sum +count;
    }
    printf("Sum of 1st 5 numbers is: %d", sum);
    return 0;
}</pre>
```

13. Calculating sum of integers 1 to 100

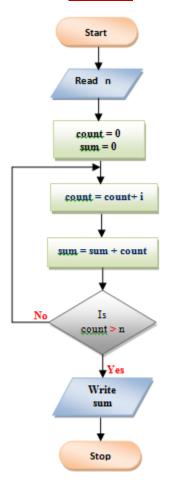
<u>Algorithm</u>

1. Start

- 2. Initialize count i = 1, sum = 0
- 3. sum = sum + i
- 4. Increment i by 1
- 5. Repeat steps 3 & 4 until i > 100
- **6.** Print sum
- 7. Stop

| #include<stdio.h> | int main() | | int i, sum; | | sum = 0; | | for(i=1; i<10 | | sum = sum | | printf("Sum o | | return 0; | | Yes | | Write | | sum |

Flowchart


```
int main()
{
    int i, sum;
    sum =0;
    for(i=1; i<101;i++)
    {
        sum = sum + i;
    }
    printf("Sum of integers from 1 to 100 is: %d", sum);
    return 0;
}</pre>
```

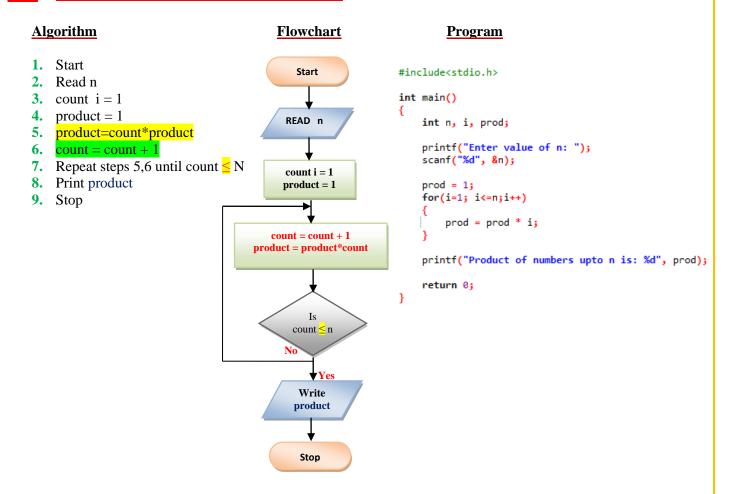
14. To find the sum of **n** natural Numbers

Algorithm

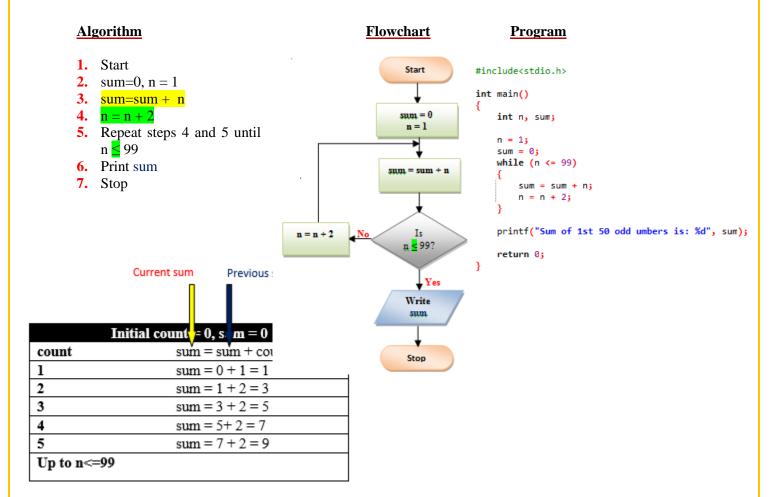
Flowchart

- 1. Start
- 2. Read n
- **3.** count=0
- **4.** sum=0
- 5. count = count + 1
- 6. sum = sum + count
- 7. Repeat steps 5 & 6 until count > n
- 8. Print sum
- 9. Stop


```
#include<stdio.h>
int main()
{
   int n, i, sum;
   sum = 0;
   printf("Enter value of n: ");
   scanf("%d", &n);
   for(i=1; i<=n;i++)
   {
      sum = sum + i;
   }
   printf("Sum of n natural numbers is: %d", sum);
   return 0;
}</pre>
```


15. Sum of squares of n natural numbers

Algorithm Flowchart Program #include<stdio.h> Start 1. Start 2. Read n int main() 3. i = 0, sum = 0 Read n int n, i, sum; 4. i = i + 1 $5. \quad sum = sum + (i*i)$ printf("Enter value of n: "); 6. Repeat steps 4 and 5 until i > nscanf("%d", &n); i = 07. Print sum sum = 08. Stop sum = 0; for(i=1; i<=n;i++) i = i + 1 $\mathbf{sum} = \mathbf{sum} + (\mathbf{i} * \mathbf{i})$ sum = sum + i*i;printf("Sum of square of integers "); printf("up to n is: %d", sum); Is i > nreturn 0; Yes Write sum Stop


16. To find the sum of all even numbers up to 'n'

Algorithm Flowchart Program Start #include<stdio.h> 1. Start 2. Read n int main() 3. count=0 READ n int n, count, sum; 4. sum=0 5. count = count + 2printf("Enter value of n: "); scanf("%d", &n); 6. sum = sum + countcount = 07. Repeat steps 5 & 6 until count ≤ n sum = 0count = 0; 8. Print sum sum = 0; 9. Stop while (count<=n) count = count + 2sum = sum + count; count = count + 2; sum = sum + countprintf("Sum of even numbers upto n is: %d", sum); return 0; Is count ≤ n Write sum Stop

17. To find Product of numbers up to N

18. Sum of first 50 odd numbers

