

1 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Chapter 8: Convolutional Codes

Convolutional codes were introduced in 1955 by Elias as an alternative to Block codes. Convolutional codes

are different from block codes by the existence of memory in the encoding scheme. Though convolutional

codes can detect errors, they are good for error correction. These codes can be used for correcting random

errors, burst errors or both. Convolutional codes are also known as recurrent codes.

The fundamental hardware unit for convolutional encoder is a tapped shift register with (L+1) stages as

shown below. L is the constraint length of the convolutional encoder and will be discussed later.

Here g0, g1, g2,…… etc are tap gains which are nothing but binary digits 0 or 1. 0 represents no connection

and 1 represents connection. So, each tap gain is a binary digit representing a short circuit or open circuit

connection. The message bits enter one by one into the tapped shift register, which are then combined by

mod-2 summers to generate the encoded output.

Consider below (2, 1, 2) convolutional encoder. msg box represents place for current input bit.

Combination of m1m2 represents state of the encoder.

2 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

The above encoder can be described by two generator sequences:

𝑔(1) = (𝑔0
(1)

, 𝑔1
(1)

, 𝑔2
(1)

) = (1, 1, 1) represents 1st output x1. Here tap gains 𝑔0
(1)

, 𝑔1
(1)

, 𝑔2
(1)

are 1 1 1 because all stages are connected to mod-2 adder. 1 represents there is a connection to mod-2 adder.

𝑔(2) = (𝑔0
(2)

, 𝑔1
(2)

, 𝑔2
(2)

) = (1, 0, 1) rep resents 2nd output x2. Here tap gains 𝑔0
(2)

, 𝑔1
(2)

, 𝑔2
(2)

are 1 0 1 because m1 stage is not connected to mod-2 adder. 0 (zero) represents there is no connection to

mod-2 adder.

Note that g(1) and g(2) are called generator sequences of the encoder. Generator sequences are nothing but

impulse response of the encoder. The encoder output is obtained by the convolution of the input sequence

with the impulse response of the encoder, hence the name convolutional code. Impulse response of the

encoder is the response of the encoder to a single “1” bit that moves through it.

Numerous other convolutional codes are obtained by modifying the encoder shown in figure. If we just

change the connections to the mod-2 summers, then the encoded output will change.

The message bits in the register are combined by mod-2 addition to form the encoded output. The input data

to the encoder, which is assumed to be binary, is shifted into and along the shift register k-bits at a time. The

number of output bits for each k-bit input sequence is n bits. The switch samples the all mod-2 adders in

sequence, once during each bit interval.

This encoder generates non-systematic codes. Unlike block codes, the use of non-systematic codes is usually

preferred over systematic codes in convolutional coding. In systematic codes, message information can be

seen and directly extracted from the encoded information.

Some important terms of convolutional codes

Code rate R

𝑐𝑜𝑑𝑒 𝑟𝑎𝑡𝑒 𝑅 =
𝑘

𝑛
=

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑏𝑖𝑡𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑎𝑡 𝑎 𝑡𝑖𝑚𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑏𝑖𝑡𝑠

Rate
𝟏

𝟐
 convolutional encoder

➢ Number of message bits k = 1

➢ Number of encoded bits n = 2

➢ Rate ½ means for each one-input bit, encoder provides 2 output bits. Encoder operates on one-bit at a

time.

➢ Suppose input sequence = 10110, then total number of encoded output bits = 5 x 2 = 10

Convolutional

encoder

Rate = 1/2

Single input bit 2 output bits

3 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Rate
𝟏

𝟑
 convolutional encoder

➢ Number of message bits k = 1

➢ Number of encoded bits n = 3

➢ Rate
𝟏

𝟑
 means for each one-input bit, encoder provides 3 output bits. Encoder operates on one-bit at a

time.

➢ Suppose input sequence = 11110, then total number of encoded output bits = 5 x 3 = 15

Rate
𝟐

𝟑
 convolutional encoder

➢ Number of message bits k = 2 (two input bits are processed at a time)

➢ Number of encoded bits n = 3 (each group of 2 inputs are transformed into 3 bits)

➢ Rate
𝟐

𝟑
 means for each group of 2 input bits, encoder provides 3 output bits. Encoder operates on 2

bits at a time.

➢ Suppose input sequence = 1110, then total number of encoded output bits = 3 + 3 = 6

For convolutional codes k and n are usually very small integers

Convolutional codes employed in FEC systems usually have small values of n and k, while constraint

lengths typically fall in the range of 10 to 30. All convolutional encoders require a commutator switch at the

output.

Constraint length (L)

A convolutional code is described by 3 integers: n, k, L

L = constraint length of encoder. Some authors represent constraint length with letter K

It is defined as the number of shifts over which a single message bit can influence the encoder output bit.

Convolutional

encoder

Rate = 1/3

Single input bit 3 output bits

Convolutional

encoder

Rate = 2/3

Group of 2 input bits 3 output bits

4 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Consider below (2, 1, 2) convolutional encoder. msg box represents place for current input bit.

Let us assume input sequence = 1

Initial condition

Place input bit 1 into msg box

After applying 1st clock pulse (1st shift)

Encoder output = x1x2 = 11

Encoder output = x1x2 = 10

5 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

After applying 2nd clock pulse (2nd shift)

After 3rd clock pulse, the input bit “1” is discarded. So, the input bit 1 influences the output of the encoder

for 2 shifts. Hence L (=2) is the number of shifts over which a single message bit can influence the encoder

output bit.

Constraint length in terms of encoded output bits:

n(L+1) = 2(2+1) = 2(3) = 6 bits

So, each message bit influences a span of n(L+1) successive output bits. The quantity n(L+1) is called the

constraint length measured in terms of encoded output bits. Here L is the encoder’s memory or number of

bits used to represent state of the encoder.

L = 3 means single message bit influences encoder output for 3 successive shifts.

Code dimension

A convolutional code is described by 3 integers: n, k, L

 𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑏𝑖𝑡𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑎𝑡 𝑎 𝑡𝑖𝑚𝑒

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑏𝑖𝑡𝑠

L = constraint length of encoder. Some authors represent constraint length with letter K

Examples: (2, 1, 3) code, (3, 2, 4) code, (3, 2, 1) code etc.

In practice, n and k are small integers and L is varied to control the capability and complexity of the code.

Q. Below figure depicts a rate ½, constraint length L = 1, convolutional encoder. Sketch the tree diagram,

 the trellis diagram and the state diagram.

Encoder output = x1x2 = 11

Convolutional

encoder

(n, k, L)

k-input bits n - output bits

6 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Sol:

𝑅𝑎𝑡𝑒, 𝑟 =
1

2
 𝑚𝑒𝑎𝑛𝑠 1 𝑖𝑛𝑝𝑢𝑡 𝑏𝑖𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 2 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑏𝑖𝑡𝑠

𝑅𝑎𝑡𝑒, 𝑟 =
1

3
 𝑚𝑒𝑎𝑛𝑠 1 𝑖𝑛𝑝𝑢𝑡 𝑏𝑖𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 3 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑏𝑖𝑡𝑠

𝑅𝑎𝑡𝑒, 𝑟 =
2

3
 𝑚𝑒𝑎𝑛𝑠 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 2 𝑖𝑛𝑝𝑢𝑡 𝑏𝑖𝑡𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 3 𝑜𝑢𝑡𝑝𝑢𝑡 𝑏𝑖𝑡𝑠

𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙, 𝑐𝑜𝑑𝑒 𝑟𝑎𝑡𝑒 𝑟 =
𝑘

𝑛
 𝑚𝑒𝑎𝑛𝑠 𝑠𝑒𝑡 𝑜𝑓 𝑘 𝑖𝑛𝑝𝑢𝑡 𝑏𝑖𝑡𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑏𝑖𝑡𝑠

Here, state of the encoder is represented by 1 – bit only.

∴ 21 = 2 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑟𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒

If 2 bits are used for state, the 22 = 4 states are possible

If 3 bits are used for state, the 23 = 8 states are possible

If 4 bits are used for state, the 24 = 16 states are possible

State table

Incoming

message bit

msg

State of encoder

m1

Current state Next state Encoded output

x1x2

------ Initial state = 0 Initial all – zero state

0 0 a

1 0 a

0 1 b

1 1 b

Let us use ‘a’ to represent state 0 and b to state 1 as shown below.

m1 State

0 a

1 b

msg

m1

m1m2 State

00 a

01 b

10 c

11 d

For current message bit

Represents state of the encoder

7 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

State table

Incoming

message bit

msg

State of encoder

m1

Current state Next state Encoded output

x1x2

------ Initial state = 0 Initial all – zero state

0 0 a 00

1 0 a 11

0 1 b 01

1 1 b 10

Output of encoder is calculated using equations

𝑥1 = 𝑚𝑠𝑔

𝑥2 = 𝑚𝑠𝑔 ⊕ 𝑚1

⊕ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝐸𝑥 − 𝑂𝑅 𝑙𝑜𝑔𝑖𝑐 𝑜𝑟 𝑚𝑜𝑑 − 2 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛

Let us calculate next states of given convolutional encoder

Incoming

message bit

msg

State of encoder

m1

Current state Next state Encoded output

x1x2

------ Initial state = 0 Initial all – zero state

0 0 a a 00

1 0 a b 11

0 1 b a 01

1 1 b b 10

Step 1:

Step 2:

Step 3:

Step 4:

State table is very useful to draw STATE diagram, code TRELLIS and code TREE diagrams. These

diagrams are graphical representation of convolutional codes, from which we can calculate the output of

convolutional encoder for any given input.

0

0

0

1

0

1

0

1

0

1

1

1

msg

After applying clock State a

After applying clock State b

After applying clock State a

After applying clock State b

msg m1 m1

8 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

State diagram

Conventions used:

Solid line for bit 0

Dotted line for bit 1

Other way of drawing state diagram:

0/01 means input/output for current input bit 0, the resulting output is 01. Avoids use of

dashed line notation.

Finding encoded output from STATE diagram

Let’s us assume input sequence m = 11101

Initially start from all-zero state i.e., a = 0

Step 1: Initially, we are at state a. Check that 1st message bit = 1. See from node a. For bit 1

 state changes from node a to b (Red line) and output = 11.

Step 2: Now we are at node b. Check that 2nd message bit = 1. See from node b. For bit 1

 state changes from b to b (Red line) and output = 10.

Step 3: Now we are at node b. Check that 3rd message bit = 1. See from node b. For bit 1

 state changes from b to b (Red line) and output = 10.

Step 4: Now we are at node b. Check that 4th message bit = 0. See from node b. For bit 0

 state changes from b to a (Black line) and output = 01.

Step 5: Now we are at node a. Check that 5th message bit = 1. See from node a. For bit 1

 state changes from a to b (Red line) and output = 11.

1/10

10

11

01 00

a = 0 b =

1

1/11

0/01 0/00

a = 0 b =

1

9 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

∴ 𝐸𝑛𝑐𝑜𝑑𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑟 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 𝑖𝑠 𝑎𝑠 𝑓𝑜𝑙𝑙𝑤𝑠:

Code TRELLIS

Conventions used

Solid line for bit 0

Dotted line for bit 1

Other way of drawing TRELLIS diagram

0/01 means input/output for current input bit 0, the resulting output is 01. Avoids use of

dashed line notation.

Finding encoded output from TRELLIS diagram

Let’s us assume input sequence m = 11101

Initially start from all-zero state i.e., a = 0

Step 1: Initially, we are at node a. Check that 1st message bit = 1. See from node a. If the

 incoming bit is 1 state changes from a to b (Red line) and output = 11.

10

11
01

00
a = 0

b =

1

a = 0

b =

1

1/10

1/11 0/01

0/00
a = 0

b =

1

a = 0

b =

1

Current state Next state

Current state Next state

10 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Step 2: Now we are at node b. Check that 2nd message bit = 1. See from node b. If the

 incoming bit is 1 state changes from b to b (Red line) and output = 10.

Step 3: Now we are at node b. Check that 3rd message bit = 1. See from node b. If the

 incoming bit is 1 state changes from b to b (Red line) and output = 10.

Step 4: Now we are at node b. Check that 4th message bit = 0. See from node b. If the

 incoming bit is 0 state changes from b to a (Black line) and output = 01.

Step 5: Now we are at node a. Check that 5th message bit = 1. See from node a. If the

 incoming bit is 1 state changes from node a to b (Red line) and output = 11.

11 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Transform Domain Approach

𝑚(𝐷) = 1. 𝐷0 + 1. 𝐷1 + 1. 𝐷2 + 0. 𝐷3 + 1. 𝐷4

 = 1 + 𝐷 + 𝐷2 + 𝐷4

For output 1: Let generator sequence 𝑔(1) = (𝑔0
(1)

, 𝑔1
(1)

, 𝑔2
(1)

, … … … . . 𝑔𝑀
(1)

)

Where M = state of the shift register

and 𝑔0
(1)

, 𝑔1
(1)

, 𝑔2
(1)

… … . 𝑎𝑟𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑔(1), 𝑤ℎ𝑖𝑐ℎ 𝑚𝑎𝑦 𝑏𝑒 1 𝑜𝑟 0

𝑔(1) = (𝑔0
(1)

, 𝑔1
(1)

) = (1, 0)

𝑔(2) = (𝑔0
(2)

, 𝑔1
(2)

) = (1, 1)

Express generator sequence in polynomial form:

𝑔(1)(𝐷) = 𝑔0
(1)

. 𝐷0 + 𝑔1
(1)

. 𝐷1 + 𝑔2
(1)

. 𝐷2 + ⋯ … . . + 𝑔𝑀
(1)

𝐷𝑀

∴ 𝑔(1)(𝐷) = 1. 𝐷0 + 0. 𝐷1 = 1

12 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

For output 2: Let generator sequence 𝑔(2) = (𝑔0
(2)

, 𝑔1
(2)

, 𝑔2
(2)

, … … … . . 𝑔𝑀
(2)

)

Express generator sequence in polynomial form:

𝑔(2)(𝐷) = 𝑔0
(2)

. 𝐷0 + 𝑔1
(2)

. 𝐷1 + 𝑔2
(2)

. 𝐷2 + ⋯ … . . + 𝑔𝑀
(2)

𝐷𝑀

𝑔0
(1)

, 𝑔1
(1)

, 𝑔2
(1)

… … . 𝑎𝑟𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑔(2), 𝑤ℎ𝑖𝑐ℎ 𝑚𝑎𝑦 𝑏𝑒 1 𝑜𝑟 0

 ∴ 𝑔(2)(𝐷) = 1. 𝐷0 + 1. 𝐷1 = 1 + 𝐷

Note: the complete convolutional encoder is described by the set of generator polynomials

(𝑔(1)(𝐷), 𝑔(2)(𝐷), 𝑔(3)(𝐷), … … … . . , 𝑔(𝑀)(𝐷))

Where D = unit delay variable

Note: the variable D is commonly used for convolutional codes and X for cyclic codes (traditional

convention)

𝑥1(𝐷) = 𝑚(𝐷). 𝑔(1)(𝐷)

 = (1 + 𝐷 + 𝐷2 + 𝐷4)(1)

 = 1 + 𝐷 + 𝐷2 + 𝐷4

 = 1. 𝐷0 + 1. 𝐷1 + 1. 𝐷2 + 0. 𝐷3 + 1. 𝐷4

 (1 1 1 0 1)

𝑥2(𝐷) = 𝑚(𝐷). 𝑔(2)(𝐷)

= (1 + 𝐷 + 𝐷2 + 𝐷4)(1 + 𝐷)

= 1 + 𝐷 + 𝐷2 + 𝐷4 + 𝐷 + 𝐷2 + 𝐷3 + 𝐷5

= 1 + 𝐷(1 + 1) + 𝐷2(1 + 1) + 𝐷3 + 𝐷5

= 1 + 𝐷(0) + 𝐷2(0) + 𝐷3 + 𝐷5

= 1 + 𝐷3 + 𝐷5

= 1. 𝐷0 + 0. 𝐷1 + 0. 𝐷2 + 1. 𝐷3 + 1. 𝐷4 + 0. 𝐷5

 (1 0 0 1 1 1)

Finally multiplexing the 2 output sequences, we get the encoded sequence.

∴ 𝐸𝑛𝑐𝑜𝑑𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑟 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 𝑖𝑠 𝑎𝑠 𝑓𝑜𝑙𝑙𝑤𝑠:

1 1 1 0 1

1 0 0 1 1

11 10 10 01 11

This answer is same as we got from time-domain approach as well as from tree diagram

𝑥1

𝑥2

Encoder output

13 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

The message sequence of length m =5 bits produce an encoded sequence of length n(m+L-1) = 2(5+3-1) =

14 bits.

For the shift register to be restored to its zero-initial state, a terminating sequence of L=1 = 3-1=2 zeros is

appended to the last input bit of the message sequence. The terminating zeros is called the TAIL OF THE

MESSAGE.

Code Tree diagram

State Table

14 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Q. Below figure depicts a rate ½, constraint length L = 2, convolutional encoder. Sketch the tree diagram,

 the trellis diagram and the state diagram.

Sol:

𝑅𝑎𝑡𝑒, 𝑟 =
1

2
 𝑚𝑒𝑎𝑛𝑠 1 𝑖𝑛𝑝𝑢𝑡 𝑏𝑖𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 2 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑏𝑖𝑡𝑠

𝑅𝑎𝑡𝑒, 𝑟 =
1

3
 𝑚𝑒𝑎𝑛𝑠 1 𝑖𝑛𝑝𝑢𝑡 𝑏𝑖𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 3 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑏𝑖𝑡𝑠

𝑅𝑎𝑡𝑒, 𝑟 =
2

3
 𝑚𝑒𝑎𝑛𝑠 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 2 𝑖𝑛𝑝𝑢𝑡 𝑏𝑖𝑡𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 3 𝑜𝑢𝑡𝑝𝑢𝑡 𝑏𝑖𝑡𝑠

𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙, 𝑐𝑜𝑑𝑒 𝑟𝑎𝑡𝑒 𝑟 =
𝑘

𝑛
 𝑚𝑒𝑎𝑛𝑠 𝑠𝑒𝑡 𝑜𝑓 𝑘 𝑖𝑛𝑝𝑢𝑡 𝑏𝑖𝑡𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑏𝑖𝑡𝑠

Here, state of the encoder is represented by 2 – bit.

∴ 22 = 4 𝑠𝑡𝑎𝑡𝑒𝑠 𝑎𝑟𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒

If 2 bits are used for state, the 22 = 4 states are possible

If 3 bits are used for state, the 23 = 8 states are possible

If 4 bits are used for state, the 24 = 16 states are possible

State table

msg

m1 m2

For current message bit

Represents state of the encoder

15 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Incoming

message bit

msg

State of encoder

m1 m2

Current state Next state Encoded output

x1x2

------ Initial state = 0 Initial all – zero state

0 00 a

1 00 a

0 01 b

1 01 b

0 10 c

1 10 c

0 11 d

1 11 d

Let us use ‘a’ to represent state 00, ‘b’ to state 01, ‘c’ to state 10 and ‘d’ to state 11 as shown below.

State table

Incoming

message bit

msg

State of encoder

m1 m2

Current state Next state Encoded output

x1x2

------ Initial state = 0 Initial all – zero state

0 00 a 00

1 00 a 11

0 01 b 11

1 01 b 00

0 10 c 10

1 10 c 01

0 11 d 01

1 11 d 10

Output of encoder is calculated using equations

𝑥1 = 𝑚𝑠𝑔 ⊕ 𝑚1 ⊕ 𝑚2

𝑥2 = 𝑚𝑠𝑔 ⊕ 𝑚2

⊕ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝐸𝑥 − 𝑂𝑅 𝑙𝑜𝑔𝑖𝑐 𝑜𝑟 𝑚𝑜𝑑 − 2 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛

m1m2 State

00 a
01 b
10 c
11 d

16 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Let us calculate next states of given convolutional encoder

Incoming

message bit

msg

State of encoder

m1 m2

Current state Next state Encoded output

x1x2

------ Initial state = 0 Initial all – zero state

0 00 a a 00

1 00 a c 11

0 01 b a 11

1 01 b c 00

0 10 c b 10

1 10 c d 01

0 11 d b 01

1 11 d d 10

17 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

State table is very useful to draw STATE diagram, code TRELLIS and code TREE diagrams. These

diagrams are graphical representation of convolutional codes, from which we can calculate the output of

convolutional encoder for any given input.

State diagram

Conventions used

Solid line for bit 0

Dotted line for bit 1

Another way of drawing state diagram

0/01 means input/output for current input bit 0, the resulting output is 01. Avoids use of

dashed line notation.

0/00

00

10

01

01

10 11 00

a = 00

b = 01

d = 11

c = 10

1/00

1/10

1/01

0/01

0/10 0/11

1/11

a = 00

b = 01

d = 11

c = 10

18 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Code TRELLIS

10

01

00

11

01

10

0/11

00
a = 00

b = 01

d = 11

c = 10

a = 00

b = 01

d = 11

c = 10

Current state Next state

19 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Conventions used:

Solid line for bit 0

Dotted line for bit 1

Other way of drawing TRELLIS diagram

0/01 means input/output for current input bit 0, the resulting output is 01. Avoids use of

dashed line notation.

0/01

1/10

1/01

1/00

1/11

0/01

0/10

0/11

0/00
a = 00

b = 01

d = 11

c = 10

a = 00

b = 01

d = 11

c = 10

Current state Next state

20 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

21 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Transform Domain Approach

𝑚(𝐷) = 1. 𝐷0 + 1. 𝐷1 + 1. 𝐷2 + 0. 𝐷3 + 1. 𝐷4

 = 1 + 𝐷 + 𝐷2 + 𝐷4

For output 1: Let generator sequence 𝑔(1) = (𝑔0
(1)

, 𝑔1
(1)

, 𝑔2
(1)

, … … … . . 𝑔𝑀
(1)

)

Where M = state of the shift register

and 𝑔0
(1)

, 𝑔1
(1)

, 𝑔2
(1)

… … . 𝑎𝑟𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑔(1), 𝑤ℎ𝑖𝑐ℎ 𝑚𝑎𝑦 𝑏𝑒 1 𝑜𝑟 0

𝑔(1) = (𝑔0
(1)

, 𝑔1
(1)

, 𝑔2
(1)

) = (1, 1, 1)

𝑔(2) = (𝑔0
(2)

, 𝑔1
(2)

, 𝑔2
(2)

) = (1, 0, 1)

Express generator sequence in polynomial form:

𝑔(1)(𝐷) = 𝑔0
(1)

. 𝐷0 + 𝑔1
(1)

. 𝐷1 + 𝑔2
(1)

. 𝐷2 + ⋯ … . . + 𝑔𝑀
(1)

𝐷𝑀

∴ 𝑔(1)(𝐷) = 1. 𝐷0 + 1. 𝐷1 + 1. 𝐷2

 = 1 + 𝐷 + 𝐷2

For output 2: Let generator sequence 𝑔(2) = (𝑔0
(2)

, 𝑔1
(2)

, 𝑔2
(2)

, … … … . . 𝑔𝑀
(2)

)

Express generator sequence in polynomial form:

𝑔(2)(𝐷) = 𝑔0
(2)

. 𝐷0 + 𝑔1
(2)

. 𝐷1 + 𝑔2
(2)

. 𝐷2 + ⋯ … . . + 𝑔𝑀
(2)

𝐷𝑀

𝑔0
(1)

, 𝑔1
(1)

, 𝑔2
(1)

… … . 𝑎𝑟𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑔(2), 𝑤ℎ𝑖𝑐ℎ 𝑚𝑎𝑦 𝑏𝑒 1 𝑜𝑟 0

∴ 𝑔(2)(𝐷) = 1. 𝐷0 + 0. 𝐷1 + 1. 𝐷2

 = 1 + 𝐷2

Note: the complete convolutional encoder is described by the set of generator polynomials

(𝑔(1)(𝐷), 𝑔(2)(𝐷), 𝑔(3)(𝐷), … … … . . , 𝑔(𝑀)(𝐷))

Where D = unit delay variable

Note: the variable D is commonly used for convolutional codes and X for cyclic codes (traditional

convention)

22 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

𝑥1(𝐷) = 𝑚(𝐷). 𝑔(1)(𝐷)

 = (1 + 𝐷 + 𝐷2 + 𝐷4)(1 + 𝐷 + 𝐷2)

 = 1 + 𝐷 + 𝐷2 + 𝐷4 + 𝐷 + 𝐷2 + 𝐷3 + 𝐷5 + 𝐷2 + 𝐷3 + 𝐷4 + 𝐷6

 = 1 + 𝐷(1 + 1) + 𝐷2(1 + 1 + 1) + 𝐷3(1 + 1) + 𝐷4(1 + 1) + 𝐷5 + 𝐷6

 = 1 + 𝐷(0) + 𝐷21 + 𝐷3(0) + 𝐷4(0) + 𝐷5 + 𝐷6

 = 1 + 𝐷2 + 𝐷5 + 𝐷6
 = 1. 𝐷0 + 0. 𝐷1 + 1. 𝐷2 + 0. 𝐷3 + 0. 𝐷4 + 1. 𝐷5 + 1. 𝐷6

 (1 0 1 0 0 1 1)

𝑥2(𝐷) = 𝑚(𝐷). 𝑔(2)(𝐷)

= (1 + 𝐷 + 𝐷2 + 𝐷4)(1 + 𝐷2)

= 1 + 𝐷 + 𝐷2 + 𝐷4 + 𝐷2 + 𝐷3 + 𝐷4 + 𝐷6

= 1 + 𝐷 + 𝐷2(1 + 1) + 𝐷3 + 𝐷4(1 + 1) + 𝐷6

= 1 + 𝐷 + 𝐷2(0) + 𝐷3 + 𝐷4(0) + 𝐷6

= 1 + 𝐷 + 𝐷3 + 𝐷6

= 1. 𝐷0 + 1. 𝐷1 + 0. 𝐷2 + 1. 𝐷3 + 0. 𝐷4 + 0. 𝐷5 + 1. 𝐷6

 (1 1 0 1 0 0 1)

Finally multiplexing the 2 output sequences, we get the encoded sequence.

∴ 𝐸𝑛𝑐𝑜𝑑𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑟 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 𝑖𝑠 𝑎𝑠 𝑓𝑜𝑙𝑙𝑤𝑠:

1 0 1 0 0 1 1

1 1 0 1 0 0 1

11 01 10 01 00 10 11

This answer is same as we got from time-domain approach as well as from tree diagram

The message sequence of length m = 5 bits produce an encoded sequence of length n(m+L-1) = 2(5+3-1) =

14 bits.

For the shift register to be restored to its zero-initial state, a terminating sequence of L=1 = 3-1=2 zeros is

appended to the last input bit of the message sequence. The terminating zeros is called the TAIL OF THE

MESSAGE.

𝑥1

𝑥2

Encoder output

23 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Code Tree

State Table

24 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Practical applications of coding

➢ Coding for deep space communications

➢ Coding for telephone – line modems

➢ Coding for compact disks

Convolutional codes can either detect or correct errors. Convolutional codes are more suitable for error

correction.

Convolutional codes are well suited to space and satellite communication systems that require simple

encoders and achieve high performance by sophisticated decoding methods.

In many applications where noise is predominantly Gaussian, the best solution is obtained when Block and

Convolutional codes are used in series.

Today channel coding has been widely used in home entertainment systems (e.g. audio & DVD), computer

storage systems (e.g. CDROM, hard disk, floppy disk and magnetic tape), computer communication,

wireless communication, and deep space communication.

Convolutional codes are widely used in practical applications of communication system design. Viterbi

decoding is predominantly used for short constraint lengths (L ≤ 10), while sequential decoding is used for

long constraint length codes, where the complexity of the Viterbi decoding becomes prohibitive.

Block codes (vs) Convolutional codes

Block codes Convolutional codes

The block of n – bits depends only on the

block of k – message bits

The block of n – bits not only depends on

the k – message bits but also on the

preceding L blocks of the message bits

More suitable for error detection More suitable for error correction

Syndrome decoding is used Viterbi decoding or sequential decoding is

used

Encoder consists of a shift register and

modulo – 2 adders

Encoder consists of shift register, mod – 2

adders and commutator switch

Graphical representation is not possible Graphical representations such as code tree,

code trellis, state diagram are possible.

Q. Consider 5-tupples 10011 and 11000. Find hamming distance.

     

Codeword 1 1 0 0 1 1

Codeword 2 1 1 0 0 0

Hamming distance = 3 as the given two codewords differ in 3 places ()

Q. the code set is given by: {000, 011, 101, 110}. Find minimum Hamming distance dmin.

Code set 000 011 101 110

Weight of

codes

0 2 2 2

∴ dmin = 2

25 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Transform domain approach

Convolution in time-domain = multiplication in spectral (frequency) domain. We can use this principle in

the transform domain approach. The encoder output is obtained by the convolution of the input sequence

with the impulse response of the encoder, hence the name convolutional code.

Two approaches can be used to find codewords in convolutional coding.

• Time domain approach

• D - Transform domain approach

Codewords obtained using the time domain approach and frequency domain approach produces same

results.

Observe above convolutional code (2, 1, 3) diagram.

• 1st function generator is connected to stage 1, 2 & 3. Therefore g(1) = [111]

• 2nd generator is connected to stages 1 & 3. Therefore g(2) = [101]

• g(1) & g(2) are known as generator sequences of convolutional encoder. Note that generator sequences

are also known as impulse responses of encoder.

• In g(1) = [101], 1 means there is a connection and 0 means corresponding flipflop is not connected.

• Impulse responses are also known as generator sequences of the convolutional code.

• Impulse responses g(1) and g(2) are called the generator sequences of the encoder.

Traditionally different variables are used for description of convolutional and cyclic codes, with D being

commonly used for convolutional codes and X for cyclic codes.

26 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Graphical representation of Convolutional codes

3 different but related graphical representations can be used to study of convolutional encoding.

• Code tree = Tree diagram

• Code trellis = Trellis diagram

• State diagram

Note that we can easily find output of the encoder from any of the above diagrams.

Given a sequence of message bits and the initial state, you can use any of following 3 diagrams to find the

resulting output bits.

State diagram:

For convolutional encoders, it is sometimes useful to draw the state transition diagram. The nodes of the

figure represent the 4 possible states of the encoder, with each node having 2 incoming branches and 2

outgoing branches.

• A transition from one state to another in response to input 0 is represented by a solid branch.

• A transition in response to 1 is represented by a dashed line.

• The binary label on each branch represents the encoder’s output as it moves from one state to other.

With the help of state diagram, we can determine the output of the encoder for any incoming message

sequence. We simply start at state ‘a’, the all zero initial state and walk through the state diagram in

accordance with the message sequence. We follow a solid branch if the input is a zero and the dashed branch

if it is a 1.

Because a convolutional encoder has finite memory, it can easily be represented by a state transition

diagram. In this diagram, each state of the convolutional encoder is represented by a box and transitions

between states are denoted by lines connecting these boxes. On each line both the input causing that

transition and the corresponding output are specified.

The number of lines emerging from each state is equal to the number of possible inputs to the encoder at that

state, which is equal to 2k.

The number of lines merging at each state is equal to the number of states from which a transition is possible

to this state. This again equal to 2k.

Code Tree

The convention used to distinguish the input binary symbols is as follows:

Input 0 ---- specifies upper branch

Input 1 ---- specifies lower branch

Each branch of the tree represents an input symbol, with the corresponding pair of output binary symbols

indicated on the branch.

It is often convenient to represent the codewords of a convolutional code as paths through a code tree. A

convolutional code is sometimes called a (linear) tree code.

27 | P a g e Y o u t u b e . c o m / E n g i n e e r s T u t o r w w w . E n g i n e e r s T u t o r . c o m

Code tree: the left most node is called the root. Since the encoder has 1 binary input, there are 2 branches

stemming from each node. (starting at the root). The upper branch leaving each node corresponds to input 0

and the lower branch corresponds to the input digit 1. On each branch we have 2 binary code digits viz., the

2 outputs from the encoder.

Each branch of the tree represents an input symbol, with the corresponding pair of output binary symbols

indicated on the branch.

Trellis diagram

A more popular and compact method to describe convolutional codes is to specify their trellis diagram. It is

so called since trellis is a tree like structure with emerging branches.

Convention used:

• A code branch produced by an input 0 is drawn as a solid line

• A code branch produced by an input 1 is drawn as a dashed line

