Algorithms and Flowcharts

Problem Analysis

Problem analysis can be defined as studying a problem to arrive at a satisfactory solution. <u>To solve a problem</u> <u>successfully, the first step is to understand the problem</u>. Also the problem must be stated clearly and accurately without any confuse. A well-defined problem and clear description of input and output are important for an effective and efficient solution. Study the outputs to be generated so that input can be specified. Design the steps, which will produce the desired result after supplying the input.

<u>If the problem is very complex, split the problem into multiple sub-problems.</u> Solve each sub-problem and combine the solutions of all the sub-problems to at arrive at overall solution to a large problem. This is called divide and conquer technique.

Problem solving steps

- Understand the problem and plan its logic
- Construction of the List of Variables
- Develop an algorithm
- Refine the algorithm. Refining means making changes
- Program Development
- Testing the Program (solution)
- Validating the Program (solution)

Algorithm

An algorithm is defined as **sequence of steps to solve a problem** (task). The steps must be finite, well defined and unambiguous. Writing algorithm requires some thinking. Algorithm can also be defined as a plan to solve a problem and represents its logic. Note that an algorithm is of no use if it does not help us arrive at the desired solution

Algorithm characteristics

- 1. <u>It should have finite number of steps</u>. No one can be expected to execute infinite number of steps.
- 2. The steps must be in order and simple
- 3. Each step should be defined clearly stated i.e. without un-ambiguity
- **4.** Must include all required information
- 5. Should exhibit at least one output

For accomplishing a particular task, different algorithms can be written. Different algorithms can differ in their requirements of time and space. Programmer selects the best suited algorithm for the given task to be solved.

Algorithm for preparing two cups of tea

- 1. Add 1.5 cups of water to the vessel
- 2. Boil water
- 3. Add 2 tea spoons of tea leaves
- 4. Add half cup of milk
- 5. Add some sugar

Statement 5 is an example of an **ambiguous** (unclear) statement. This statement doesn't clearly state the amount of sugar to be added.

Algorithm characteristics

- 1. <u>It should have finite number of steps</u>. No one can be expected to execute infinite number of steps.
- 2. The steps must be in order and simple
- 3. Each step should be defined clearly stated i.e. without un-ambiguity (without doubtfulness)
- **4.** Must include all required information
- **5.** Should exhibit at least one output

Algorithm	Flowchart	Program
An algorithm is defined as sequence of steps to solve a problem (task) .	<u>A flowchart is pictorial</u> (graphical) representation of an algorithm.	Set of instructions. Instruction is a command to the computer to do some task.
	A picture is worth of 1000	
a plan to solve a problem and represents its logic.	words. We can understand more from picture than words.	flowchart

Different algorithms have different performance characteristics to solve the same problem. Some algorithms are fast. Some are slow. Some occupy more memory space. Some occupy less memory space. Some are complex and some algorithms are simple.

Logically algorithm, flowchart and program are the same.

Algorithm design

- Design an algorithm that is easy to understand code and debug. Debugging is the process finding and fixing errors in a program
- Design an algorithm that makes use of resource such as space (memory) and time efficiently

Flowchart

<u>A flowchart is a pictorial (graphical) representation of an algorithm</u>. A flowchart is drawn using different kinds of symbols. A symbol is used for a specific purpose. Each symbol has name.

Flowcharts use different shapes of boxes to denote different type of instructions. ANSI recommended a number of different rules and guidelines to help standardize the flowcharting process.

- □ Algorithms are represented using flowcharts
- □ Flowchart symbols are standardized by ANSI
- □ Flowchart helps to divide a large complex problem into small manageable ones
- Generally, algorithm is first represented as a flowchart and then expressed in a programming language
- □ While preparing a flowchart, the sequence, selection and iterative structures may be used wherever required

<u>Note</u>

Experienced programmers, sometimes write programs without drawing a flowchart. Beginners should first draw a flowchart to reduce number of errors in the program.

Rules for Drawing a Flowchart

- □ It should contain only one start and one end symbol
- □ The relevant symbols must be used while drawing a flowchart
- □ The direction of arrows should be top to bottom and left to right
- □ It should be simple and drawn clearly and neatly
- Be consistent in using names, variables in the flow chart
- Use properly labeled connectors to link the portions of the flowchart on different pages
- □ The branches of decision box must be label

Advantages of Flowcharts

- □ Conveys better meaning
- \Box Analyses the problem effectively
- \square Good tool for documentation
- \Box Provide guide for coding
- □ Systematic debugging
- □ Systematic testing

Disadvantages of Flowcharts

- □ Takes more time to draw. Imagine developing a detailed flowchart for a program containing 50000 lines or statements of instructions
- □ Difficult to make changes
- □ Non-standardization No standards to determine amount of details should be included in a flowchart

Symbol	Meaning
	Start/Stop
	Process
	Input/Output
	Decision/Branching
	Connector
	Flow
	Manual Input
	Predefined Process

Flowchart Symbols

4 | Page Youtube.com/EngineersTutor

PROGRAMMING CONSTRUCTS

There are THREE basic programming constructs. They are:

SEQUENCESELECTIONITERATION

SEQUENCE

Sequence logic is used for performing instructions one after another in sequence.

- \Box Sequence is the most basic of the constructs
- \Box It is simply performing one step after another
- \Box Each step is followed in a specific sequence, hence the name
- □ Sequence can be thought of as "do this, then do this, then do this"

SELECTION

Selection logic, also known as decision logic, is used for making decisions. Selection logic is depicted as either an IF...THEN...ELSE or IF.....THEN structure.

- □ Selection is the decision-making construct.
- $\hfill\square$ It is used to make yes/no or true/false decisions logically.
- \Box Selection can be thought of as "if something is true, take this action, otherwise take that action".

ITERATION

Iteration logic is also known as **Loop**. Iteration logic is used when one or more instructions may be executed several times depending on some condition.

ITERATION

- □ Iteration comes from the word "reiterate", which means to repeat
- □ Iteration is a looping construct
- $\hfill\square$ Iteration is a combination of decision and sequence and can repeat steps
- □ Iteration can be thought of as "while something is true, do this, otherwise stop"

Finding Area of the square

www.<mark>E</mark>ngineersTutor.com

Interchange the value of two numbers

8 | Page Youtube.com/EngineersTutor

Calculating the average for 3 numbers

9 | Page Youtube.com/EngineersTutor

Find the area & perimeter of a square

Algorithm

- 1. Start
- 2. Read length L
- $3. \quad \text{Area } A = L^*L$
- **4.** Perimeter P = 4*L
- 5. Print or display A, P
- 6. Stop

Find the Sum of First Five Natural Numbers

Area of a triangle where three sides are given

Calculate simple interest using the expression (SI=PNR/100)

11 | Page Youtube.com/EngineersTutor

Convert temperature from Fahrenheit to Celsius

Calculating sum of integers 1 to 100

Sum of squares of n natural numbers

15 | Page Youtube.com/EngineersTutor

Calculating percentage of marks

To find the sum of all even numbers up to 'n'

